A Concept of Bayesian Regulation in Fisheries Management

نویسندگان

  • Noél Michael André Holmgren
  • Niclas Norrström
  • Robert Aps
  • Sakari Kuikka
چکیده

Stochastic variability of biological processes and uncertainty of stock properties compel fisheries managers to look for tools to improve control over the stock. Inspired by animals exploiting hidden prey, we have taken a biomimetic approach combining catch and effort in a concept of Bayesian regulation (BR). The BR provides a real-time Bayesian stock estimate, and can operate without separate stock assessment. We compared the performance of BR with catch-only regulation (CR), alternatively operating with N-target (the stock size giving maximum sustainable yield, MSY) and F-target (the fishing mortality giving MSY) on a stock model of Baltic Sea herring. N-targeted BR gave 3% higher yields than F-targeted BR and CR, and 7% higher yields than N-targeted CR. The BRs reduced coefficient of variance (CV) in fishing mortality compared to CR by 99.6% (from 25.2 to 0.1) when operated with F-target, and by about 80% (from 158.4 to 68.4/70.1 depending on how the prior is set) in stock size when operated with N-target. Even though F-targeted fishery reduced CV in pre-harvest stock size by 19-22%, it increased the dominant period length of population fluctuations from 20 to 60-80 years. In contrast, N-targeted BR made the periodic variation more similar to white noise. We discuss the conditions when BRs can be suitable tools to achieve sustainable yields while minimizing undesirable fluctuations in stock size or fishing effort.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

BayFish – Tonle Sap: A Bayesian Model of The Fish Production In The Tonle Sap Great Lake, Cambodia

Probabilistic Bayesian networks have been used as decision making tools mainly in medicine and economics, but recently they have also been utilized in natural resource management. In this study a Bayesian model is built as a decisionmaking tool for fisheries management in the Tonle Sap Lake in Cambodia. As the largest freshwater fishery in the world, the Tonle Sap has enormous importance to bot...

متن کامل

Investigating non-compliance behavior with fisheries regulations in the Persian Gulf

Non-compliance with fishing regulations by Iranian fishermen in three provinces of Khuzestan, Bushehr, and Hormozgan along the Persian Gulf was investigated. Using a questionnaire and a stratified random sample method, a total of 566 fishermen were interviewed. The legitimacy variables (outcome and process) that can explain the observed noncompliance with zoning regulations for the shrimp fishe...

متن کامل

Bayesian Analysis of Spatial Probit Models in Wheat Waste Management Adoption

The purpose of this study was to identify factors influencing the adoption of wheat waste management by wheat farmers. The method used in this study using the spatial Probit models and Bayesian model was used to estimate the model. MATLAB software was used in this study. The data of 220 wheat farmers in Khouzestan Province based on random sampling were collected in winter 2016. To calculate Bay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014